skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chand, Saroj_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Radiative recombination processes can occur in solid-state systems through the pairing of donor and acceptor defects of the lattice. Recently, donor-acceptor pairs (DAP) have been proposed as promising candidates for quantum applications, and their signature has been observed in emerging low-dimensional materials. Therefore, the identification of such processes is gaining interest and requires methods to efficiently and reliably characterize them. Here, we introduce a general algorithm to identify DAP processes starting from the experimental photoluminescence (PL) emission spectrum and basic material parameters, including the lattice structure and dielectric constant. The algorithm recognizes possible DAP transitions from the emission pattern in the spectrum and returns the characteristic energy of the DAP transition and the separation between the donor and acceptor sites. By testing the algorithm on the photoluminescence spectrum of hexagonal boron nitride (hBN), we show that our method is robust against experimental errors and adds new capabilities to the investigation toolbox of semiconductors and their optical properties. 
    more » « less